
ZombieCoin: Powering Next-Generation Botnets
with Bitcoin

Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

Newcastle University, UK
{taha.ali,patrick.mccorry,peter.lee,feng.hao}@ncl.ac.uk

Abstract. Botnets are the preeminent source of online crime and ar-
guably the greatest threat to the Internet infrastructure. In this paper,
we present ZombieCoin, a botnet command-and-control (C&C) mecha-
nism that runs on the Bitcoin network. ZombieCoin offers considerable
advantages over existing C&C techniques, most notably the fact that
Bitcoin is designed to resist the very regulatory processes currently used
to combat botnets. We believe this is a desirable avenue botmasters may
explore in the near future and our work is intended as a first step towards
devising effective countermeasures.

1 Introduction

Almost eight years have passed since Vint Cerf’s dire warning of a botnet “pan-
demic” [1], and since then the threat has only intensified. Large botnets today
typically number millions of infected victims (individually referred to as bots or
zombies), employed in a wide range of illicit activity including spam and phishing
campaigns, spying, information theft and extortion [2]. The FBI recently esti-
mated that 500 million computers are infected annually, incurring global losses
of approximately $110 billion [3]. Botnets have now started conscripting mobile
phones [4] and smart devices, such as refrigerators and surveillance cameras to
spam and mine cryptocurrencies [5].

The fatal weak point for botnets is the C&C infrastructure, the central ner-
vous system of the botnet. Downstream communication comprises instructions
and software updates sent by the botmaster, whereas upstream communication
from bots includes loot, such as financial data, login credentials, etc. Security
researchers usually reverse engineer a bot, infiltrate the C&C network, trace
the botmaster and disrupt the botnet. The overwhelming majority of success-
ful takedown operations to date have relied heavily on exploiting or subverting
botnet C&C infrastructures [2].

In this paper, we argue that Bitcoin is an ideal C&C dissemination mecha-
nism for botnets. Bitcoin offers botmasters considerable advantages over existing
C&C techniques such as chatrooms, HTTP rendezvous points, or P2P networks.
First, by piggybacking communications onto the Bitcoin network, the botmas-
ter is spared the costly and hazardous process of maintaining a custom C&C
network. Second, Bitcoin provides some degree of anonymity which may be en-
hanced using conventional mechanisms like VPNs or Tor. Third, Bitcoin has

2 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

built-in mechanisms to harmonize global state, eliminating the need for bot-to-
bot communication. Capture of one bot therefore does not expose others, and
an observer may not easily enumerate the size of the botnet.

Most importantly, C&C communications over the Bitcoin network cannot
be shut down simply by confiscating a few servers or poisoning routing tables.
Furthermore, disrupting C&C communication would be very hard to do without
seriously impacting legitimate Bitcoin users and may break Bitcoin. Any form
of regulation would be a fragrant violation of the libertarian ideology Bitcoin
is built upon [6]. It would also entail significant protocol modification on the
majority of Bitcoin clients scattered all over the world.

In this paper, we explore in detail the possibility of running a botnet over
Bitcoin. Our goal, of course, is not to empower criminal operations, but to evalu-
ate this threat so that preemptive solutions may be devised. This is in the spirit
of existing research efforts exploring emergent threats (such as cryptovirology
[7] and the FORWARD initiative [8]). Our specific contributions are:

1. We present ZombieCoin, a mechanism enabling botmasters to communicate
with bots by embedding C&C information in Bitcoin transactions.

2. We enumerate various strategies to embed C&C information in transactions
and undertake a detailed comparison.

3. We prototype and deploy ZombieCoin and issue C&C commands to bots
over the Bitcoin network. Our results show that bots receive and respond in
a 5-12 second window.

2 Background

We summarize here the evolutionary path of C&C mechanisms, followed by a
brief overview of Bitcoin.

2.1 Botnet C&C Mechanisms

First generation botnets, such as Agobot, SDBot, and SpyBot (observed in 2002-
2003) [9], maintain C&C communications over Internet Relay Chat (IRC)
networks. The botmaster hardcodes IRC server and channel details into the
bot executable prior to deployment, and, after infection, bots log on to the spec-
ified chatroom for instructions. This method has numerous advantages: the IRC
protocol is widely used across the Internet, there are several public servers which
botnets can use, and communication is in real-time. However, the network signa-
ture of IRC traffic is easily distinguished. More critically, this C&C architecture
is centralized. Researchers can reverse-engineer bots, allowing them to eavesdrop
in C&C chatrooms, identify the bots and track the botmaster. Researchers also
regularly coordinate with law enforcement to legally take down C&C chatrooms,
crippling the entire botnet in just one step. According to insider accounts, two
thirds of IRC botnets are shut down in just 24 hours [10].

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 3

The second generation of botnets upgraded to HTTP-based C&C com-
munications. Examples include Rustock, Zeus and Asprox (observed in 2006-
2008). Bots periodically contact a webserver using HTTP messages to receive
instructions and offload loot. HTTP is ubiquitous on most networks and bot
communications blend in with legitimate user traffic. However, web domains
can be blocked at the DNS level, C&C webservers can be located and seized and
the botmaster can be traced.

To adapt, botmasters came up with two major innovations. Bots are no
longer hardcoded with a web address prior to deployment, but with a Domain
Generation Algorithm (DGA) that takes date and time as seed values to
generate custom domain names at a very rapid rate. The rationale is that it
is very costly and time-consuming for law enforcement to seize a large number
of domains whereas the botmaster has to register only one to successfully ren-
dezvous with his bots in a given time-window. Conficker-C generated 50,000 do-
main names daily, distributed over 116 Top Level Domains (TLDs) which proved
nearly impossible to block [11]. However, DGAs can be reverse-engineered. Secu-
rity researchers hijacked the Torpig botnet for a period of ten days by registering
certain domains ahead of the botmasters [12].

The second innovation is Domain Flux: botmasters now link several hun-
dreds of destination IP addresses with a single fully qualified domain name in a
DNS record (e.g. www.domain.com). These IP addresses are swapped with very
high frequency (as often as every 3 minutes), so that different parties connecting
to the same domain within minutes of each other are redirected to different loca-
tions. Furthermore, destination IP addresses often themselves point to infected
hosts which act as proxies for the botmaster. Yet another layer of confusion
can be added into the equation by similarly concealing the Authoritative Name
Servers for the domain within this constantly changing fast flux cloud.

The third major botnet C&C infrastructure, decentralized P2P networks,
have been used by Conficker, Nugache and Storm botnets in 2006-2007. Bots
maintain individual routing tables, and every bot actively participates in rout-
ing data in the network, making it very difficult to identify C&C servers. How-
ever, P2P-based bots also have weak points: for instance, to bootstrap entry
into the P2P network, Phatbot uses Gnutella cache servers on the Internet and
Nugache bots are hardcoded with a seed list of IP addresses, both of which are
centralized points of failure [13]. Security researchers have been able to detect
P2P traffic signatures, successfully crawl P2P networks to enumerate the botnet,
and poison bot routing tables to disrupt the botnet. In a concerted takedown
effort, Symantec researchers took down the ZeroAccess botnet by flooding rout-
ing advertisements that overwhelmed bot routing tables with invalid or sinkhole
entries, isolating bots from each other and crippling the botnet [14].

Some botnets employ multiple solutions for robustness, for example, Con-
ficker uses HTTP-based C&C in addition to its P2P protocol [11]. More recently
botnets have begun experimenting with esoteric C&C mechanisms, includ-
ing darknets, social media and cloud services. The Flashback Trojan retrieved
instructions from a Twitter account [15]. Whitewell Trojan used Facebook as a

4 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

rendezvous point to redirect bots to the C&C server [16]. Trojan.IcoScript used
webmail services like Yahoo Mail for C&C communications [17]. Makadocs Tro-
jan [18] and Vernot [19] used Google Docs and Evernote respectively as proxies
to the botmaster. The results have been mixed. Network administrators rarely
block these services because they are ubiquitously used, and C&C traffic is there-
fore hard to distinguish. On the other hand, C&C channels are again centralized
and companies like Twitter and Google are quick to crack down on them.

2.2 Bitcoin

Bitcoin may be visualized as a distributed database which tracks the ownership
of virtual currency units (bitcoins). Bitcoins are not linked to users or accounts
but to addresses. A Bitcoin address is simply a transformation on a public-
key, whereas, the private-key is used to spend the bitcoins associated with that
address. A transaction is a statement containing an input address, an output
address, and the quantity to be transferred, digitally signed using the private-
key associated with the input. More complex transactions may include multiple
inputs and outputs. All inputs and outputs are created using scripts that define
the conditions to claim the bitcoins.

Transactions are circulated over the Bitcoin network, a decentralized global
P2P network. Users known as miners collect transactions and craft them into
blocks, which are chained into a blockchain to maintain a cryptographically ver-
ifiable ordering of transactions. Miners compete to solve a proof-of-work puzzle
to insert their block into the blockchain. New blocks are generated at the rate of
approximately once every ten minutes. The double spending problem of digital
currencies is overcome by replicating the blockchain at the network nodes and
using a consensus protocol to ensure global consistency of state.

Trustlessness is fundamental to Bitcoin: Bitcoin was deliberately designed to
resist the kind of centralization, monetary control, and oversight which restrict
fiat currencies [6]. Users have some degree of anonymity1 which may be enhanced
using Tor and mixing services. The decentralized nature of the network and the
proof-of-work puzzle ensures that transactions in the network cannot be easily
regulated. Bitcoin can only be subverted if a malicious party in the network
musters more computing power than the rest of the network combined.

3 ZombieCoin

Here we outline briefly how ZombieCoin works:
1) We assume the botmaster owns Bitcoin credentials, i.e. a key pair (sk, pk).

The public-key, pk, is hardcoded into the bot binary file prior to deployment,
so that bots can authenticate communication from the botmaster. Bots are also
equipped with an instruction set to decode commands. Our implementation,

1 Bitcoin technically provides pseudonymity, a weaker form of anonymity, in that Bit-
coin addresses are not tied to identity and it is trivial to generate new addresses.

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 5

described in Section 4, consists of simple instructions such as REGISTER, PING,
UPDATE, etc. with associated parameters.

2) The botnet is then released into the wild. We assume there is an infection
mechanism to propagate the botnet.

3) Bots then individually connect to the Bitcoin network and receive and
propagate incoming transactions. All network communication proceeds as per
the standard Bitcoin protocol specification described in [20]. By adhering to the
standard protocol, the network behavior of the botnet to an outside observer is
indistinguishable from the traffic of a genuine Bitcoin user.

4) The botmaster periodically issues C&C instructions by obfuscating and
embedding them into transactions. Bots identify these transactions by scanning
the ScriptSig field in the input which contains the botmaster’s public-key, pk,
and the digital signature (computed over the transaction) using private-key sk.
Bots verify the signature and decode and execute the instructions.

3.1 Inserting C&C Instructions in Transactions

The most straightforward method is to insert C&C data in the OP RETURN
output script function. This function is a recent feature included in the 0.9.0
release of the Bitcoin Core client, allowing users to insert up to 40 bytes of
data in transactions. This inclusion is due to immense lobbying by the Bitcoin
community [21]. Developers anticipate the usage of this function to be along the
lines of meaningful transaction identifiers (similar to text fields in online banking
transactions), hash digests of some data such as contracts [22], cryptotokens,
or even index values to link to other data stores. Analysis of a recent 80-block
portion of the blockchain reveals that the OP RETURN field was used in about a
quarter of transactions in that portion [23], indicating that this feature is proving
popular. One company has already launched timestamping services which rely
on embedding hash data in this field [23].

This bandwidth is more than sufficient to embed most botnet commands
which are typically instruction sets in the format < command >< parameter >
... < parameter >. For instance, the DDoS attack library for Agobot [9] con-
tains commands: ddos.synflood < host >< time >< delay >< port > and
ddos.httpflood < url >< number >< referrer >< delay >< recursive >,
etc. Agobot has over ninety such commands and they can be encoded numeri-
cally using efficient schemes like Huffman coding to fit within the 40 byte limit.

A second approach offering greater bandwidth possibilities is to embed C&C
instructions as unspendable outputs. This is a common technique and used by
Counterparty [24] and Mastercoin [25]. We dissect a typical Mastercoin trans-
action in Fig. 1. The first output address, 1EXoDusjG..., referred to as the
Mastercoin Exodus Address, identifies this as a Mastercoin transaction. The
last output address is an unspendable output, which decodes into a Mastercoin
transaction. Very small bitcoin values are generally associated with such outputs
because they cannot be redeemed. Up to 20 bytes of data may be inserted into an
unspendable output, and a single transaction may have multiple such outputs.

6 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

{ inputs: [{ address: '1LQBddrjjUaMLHcd4cG9XnN4cCZbHfREJF' , value: 1445759 }],
 outputs: [{ address: '1EXoDusjGwvnjZUyKkxZ4UHEf77z6A5S4P', value: 6000 },
 { address: '12ARS3euPbdQ9S68xXhmq4ySzSADfMaR1a', value: 6000 }
 { address: '1D3tBJ6b3htSaMhEV3EtTAPLvTHwLBrQPH', value: 1417759 },
 { address: ' ', value: 6000 }] }

0b 00000000 00000001 000000004042cd1d000000

0b – transaction sequence number

00000000 – transaction type (regular send)

00000001 – currency ID (Mastercoin)

000000004042cd1d – value – converting hex to decimal (1078119709)

Bitcoin Transaction

Mastercoin Transaction

Fig. 1. Decoding a Mastercoin transaction [27]

Proof of Existence [26], a Bitcoin-based notary public service, timestamps data
by inserting hash digests as multiple unspendable outputs in transactions.

Incidentally, however, Mastercoin, Counterparty, and Proof of Existence plan
to migrate to using the OP RETURN function [21]. As we noted, unspendable
outputs are inherently wasteful. This method is also clumsy: Bitcoin clients
maintain a live inventory of unspent transaction outputs (UTXO) to efficiently
verify validity of new transactions. Clients cannot identify malformed outputs,
with the result that these addresses populate the UTXO data set indefinitely
(since they are never spent), affecting the efficiency of the network as a whole.

A more elegant technique is to communicate C&C messages by key leak-
age. Signing two different messages using the same random factor in the ECDSA
signature algorithm allows an observer to derive the signer’s private-key. Such
instances have already been observed in the blockchain, resulting in coin theft
[28]. In this case, the botmaster frames the C&C instruction within a 32 byte
ECDSA private-key (including padding with random data so that identical com-
mands do not always yield the same private-key). This is followed an obfuscation
technique to give the data enough randomness to function as a private-key. The
public-key is then derived. The botmaster then signs two transactions using the
same random factor allowing bots to derive the private key.

This approach is used by Commitcoin [29] to insert hash digests in trans-
actions. Bitcoins are not wasted using this method, and bandwidth is up to 32
bytes per input. However, two transactions are needed to leak the instructions.

A more covert solution is to use subliminal channels. Simmons [30] [31]
notably demonstrated that two parties can set up a secret communications chan-
nel in digital signature schemes. This is again done by exploiting the random
factor used by the signing algorithm. The botmaster creates a C&C instruction
bitstring of length x bits. He then repeatedly generates signatures on the trans-
action using different random factors, until he gets a match, i.e. a signature,
the first x bits of which match the target bitstring. He attaches this signature

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 7

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

Bandwidth of Individual Subliminal Channel (bits)

S
ig
n
a
tu
re
 G
e
n
e
ra
ti
o
n
 T
im
e
 (
s
)

Sequential

Multithreading

Shared-search Multithreading

Fig. 2. Bandwidth vs. signature generation time for subliminal channels

to the transaction and publishes it. Nodes receive the transaction, verify that
the signature is valid, and propagate it. Bots, on the other hand, extract the
instructions from the first x bits and execute them.

Bandwidth is restricted using this technique due to the one-way nature of the
signing function. Generating x bits of an ECDSA signature to match a bitstring
takes on average 2x iterations. For larger instructions, the botmaster may choose
to split them into smaller target bitstrings inserted in multiple signatures. We
briefly investigate here the practicality of this approach. We use an Intel i7
machine operating at 2.8 GHz with 8GB RAM, running 64-bit Windows 7, and
we use the OpenSSL toolkit to construct ECDSA signatures with subliminal
channels of incrementing size. In each run we construct eight signatures matching
a target string and record the time taken. Results are plotted in Fig. 2.

As demonstrated, it takes under 10 minutes (600s) to sequentially generate
eight signatures with subliminal channels of size 14 bits each. Total bandwidth
in this case is 14 · 8 bits (i.e. 14 bytes overall). We consider here a couple of
optimizations: first, we use multithreading to parallelize the operations across
the multiple processors of the machine. It now takes about 3 minutes to generate
eight signatures with 14-bit channels, a reduction of nearly 65%.

Second, instead of passing each thread a single target bitstring, each thread
now searches across the whole range of targets. The process stops as soon as
each thread has located at least one distinct target. This shared-search step ex-
ploits the randomness of the signature generation process, increasing the odds
of a successful match. We note an approximate 20% improvement over the basic
multithreading scenario, taking only about 2 minutes to generate eight 14-bit
subliminal channels, which is very practical. The botmaster can order the re-
sulting signatures accordingly in the transaction to construct the full channel.

8 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

4 Proof of Concept

We build a 14 node botnet and evaluate its performance over the Bitcoin network.
We use the BitcoinJ library [32], which is an open source Java implementation of
the Bitcoin protocol. We chose the Simplified Payment Verification (SPV) mode
[33], which has a very low memory and traffic footprint, ideally suited for botnets.
As opposed to Core nodes, SPV nodes do not replicate the entire blockchain
but only a subset of block headers and filter incoming traffic to transactions
of interest. Our bot application is 7MB in size, the locally stored blockchain
content is maintained at 626kB, and at the network level, the bot’s traffic is
indistinguishable from that of any other SPV client.

To simulate a distributed presence, we installed our bots in multiple locations
in the United States, Europe, Brazil, and East Asia using Microsoft’s Azure cloud
platform [34], and ran two bots locally in our Computing Science Department.
The bots individually connect to the Bitcoin network, download peer lists, and
scan for transactions circulated by the botmaster (us).

Our experiment loops approximately once per hour through an automated
cycle of rudimentary instructions in the sequence depicted in Fig. 3. We embed
C&C instructions in the OP RETURN field and in (3-bit) subliminal channels
in the authorized signatures. Bots are hardcoded with the a public-key, enabling
them to identify our transactions. Bots receive transactions, verify, decode, and
execute them.

We simulate botnet leasing in Step 3. Botmasters commonly monetize their
botnet by partitioning and leasing it as “botnets for hire”. In our case, botmas-
ter and tenant sign and publish a multi-input transaction containing the LEASE
command. This transaction is a bona fide contract between botmaster and ten-
ant and includes the lease payment in bitcoins from the tenant to botmaster.
Bots verify input signatures, record the tenant’s public-key, and accept C&C
instructions issued by the tenant for the specified lease period.

When the tenant assumes control, he may send bots new encryption creden-
tials or software modules. We simulate this with the DOWNLOAD command
which uses transaction chaining to send bots a 256 byte RSA public-key, split

SCREENSHOT - < 5 > < webserver address > < number of screenshots >
Tenant instructs bots to capture screenshots and upload them to a webserver

DOWNLOAD DATA - < 4 > < number of transactions >
Tenant instructs bots to download data the defined number of transactions

LEASE - < 3 > < block height > < Tenant Bitcoin address >
Botmaster rents botnet to a Tenant

REGISTER - < 2 > < webserver address >
Botmaster instructs bots to send registration messages to a webserver

 From Command To

PING - < 1 > < website > < number of pings >
Botmaster instructs bots to ping a website a certain number of times

Tenant

Botmaster
Bots

Botmaster

Botmaster

Tenant

Tenant

Bots

Bots

Bots

Bots

Fig. 3. Sequence of commands in the experiment

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 9

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bot response time t (s)

P
ro
b
a
b
ili
ty
 t
h
a
t
b
o
t
re
s
p
o
n
s
e
 t
im
e
 <
 t

Fig. 4. Cumulative probability distribution of bot response time

over 7 back-to-back transactions. When bots receive the SCREENSHOT com-
mand, they capture a snapshot of the victim’s desktop, encrypt it using the
tenant’s RSA public-key and send it to the web address specified.

We collect over 2300 responses from our bots over a 24 hour period. We
are interested in the C&C channel latency and in the time it takes for bots to
respond to an instruction. To synchronize readings over multiple time zones, we
configure bots to set their clocks using a common timeserver.

Fig. 4 plots the cumulative probability distribution of the bot response time.
About 50% of the time, the bots responded within 5 seconds, and 90% of the
time within 10 seconds. Median response time is 5.54 seconds. In the interest
of improved visualization, our results do not show outliers beyond the 100 sec-
ond mark. Only in 15 instances (0.6% of overall results) was bot response time
greater, ranging from 100-260s.

5 Discussion

We believe our preliminary results highlight the realistic and practical aspects of
ZombieCoin and we should take seriously the threat of botnets upgrading C&C
communications onto the Bitcoin network.

So far we have assumed bots identify messages from the botmaster based
on transaction input which raises the possibility of blacklisting the botmaster’s
Bitcoin address. This is not likely to resolve the problem. For one, it would be
a form of regulation, a fundamental violation of the Bitcoin ethos [6], and we
expect Bitcoin users would be the first to vigorously resist such attempts.

Second, such a step would require a significant protocol upgrade which could
potentially degrade performance and usability of Bitcoin for legitimate users.
Miners by themselves could, with relative ease, cooperate and ensure ZombieCoin
transactions are ignored and do not appear in the blockchain. However, this does

10 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

not solve the underlying problem of the circulation of valid ZombieCoin transac-
tions throughout the network. In the current protocol version, nodes that receive
incoming transactions perform checks for correctness (i.e. the input address is
valid, the transaction is in the correct format, sum of inputs equals outputs,
digital signature verification, etc.) and then forward the transaction on to other
nodes. In our demo described earlier, our bots do not look up transactions from
incoming blocks of the blockchain at approximate 10 minute intervals, but receive
them within a 5-12 second window as the transactions propagate throughout the
network. Even if all C&C transactions are ultimately rejected by miners, the bots
have already received them, validated them, and carried out the embedded in-
structions. Halting the propagation of these transactions in the Bitcoin network
would require the cooperation of the majority of nodes in the network.

Furthermore, the botmaster can switch to alternate authentication strategies
which do not rely solely on Bitcoin addresses but may use subliminal channels
in transaction outputs or digital signatures. Botmasters could potentially keep
escalating the fight, making it harder for legitimate clients to use the network.

In theory, an anti-virus installed on a victim’s machine could scan the Bitcoin
network in lockstep with bots and block incoming C&C instructions. However,
new malware are adept at evading anti-viruses: Torpig bots [12] contain rootkit
functionality, executing their code prior to loading the OS, or injecting their
code into legitimate processes to escape detection.

We would also make brief mention here of the costs of running ZombieCoin.
Typically it costs about 3 cents (0.1mBTC) for every 1000 bytes of data in the
transaction. If a botmaster were to issue one command every 20 minutes, this
would translate to about US$ 2.2 a day. Our experiment ran over 24 hours and
250 C&C instructions were sent at a cost of US$ 7.50. This cost is trivial not only
compared to the profits of successful botnets which is typically in the hundreds
of thousands of dollars, but also if one considers the alternative scenario where
a botmaster runs his own customized C&C network. This dramatically increases
the odds of detection, botnet takedown, and risks exposing the botmaster.

Thus far we have not found any recognition of this threat among the Bit-
coin community. We urgently need constructive dialogue regarding the grave
risks associated with unregulated networks. Perhaps we also need to shift re-
search focus back to traffic analysis and malware detection techniques. The new
paradigm of software-defined networking (SDN) may hold some promise: there
is already research suggesting SDN assists significantly in detecting malware-
related anomalies at the network level [35].

We would stress here an earlier suggestion from the literature [12]: researchers
and law enforcement should cultivate working relationships with registrars and
ISPs to enable rapid response time to malware threats. Another approach pro-
posed before, but, to the best of our knowledge, never applied in practice is
to combat the botnet problem at its root, the economy that drives it. Ford et
al. [36] propose deliberately infecting large numbers of decoy virtual machines
(honeypots) to join the botnet but remain under control of the white hats. By
disruptive, unpredictable behavior, these sybils will actively undermine the eco-

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 11

nomic relationship between botmaster and clients. An ad master for instance,
may pay for a certain number of ad impressions, and sibyls making artificial
clicks will not translate to the expected increase in actual sales. Targeting the
economic incentive may prove a potent counter to the botnet threat.

6 Prior Work

Botnet-related research follows multiple strands. There are studies on the botnet
economy [37] [36] [38]. Researchers have autopsied botnets, including early vari-
eties like Agobot, SDbot [9], and state-of-the-art worms, Conficker [39], Storm
[40], Waladec [41], and ZeroAccess [42]. There is extensive work on botnet track-
ing methods [43] [44] and traffic analysis and detection tools such as BotSniffer
[45], BotMiner [46], and BotHunter [47]. Researchers have infiltrated botnets [12]
and documented insider perspectives [48]. Readers interested in comprehensive
surveys of the botnet phenomenon are directed to [49] [50].

There is a growing literature on exploring novel C&C mechanisms so that
preemptive solutions may be devised. We summarize here a few such efforts:

Starnberg et al. present Overbot [51] which uses the P2P protocol Kademlia
for stealth C&C communications. The authors share our design concerns that
bot traffic is covert and not easily distinguishable. However, there are critical
differences: Overbot nodes carry the private key of the botmaster, and capturing
one bot compromises the entire botnet’s communications. Furthermore, unlike
our case where instructions are circulated within seconds, for Overbot this may
take up to 12 hours. ZombieCoin also requires substantially less network man-
agement as the Bitcoin network handles message routing and global consistency.

The work closest to ours is that of Nappa et al. [52] who propose a C&C
channel overlaid on the Skype network. Skype is closed-source, has a large user
base, is resilient to failure, enforces default encryption, and is notoriously difficult
to reverse engineer, all of which are ideal qualities for C&C communications. As
in our case, disrupting this botnet would significantly impact legitimate Skype
users. However, unlike Bitcoin, Skype is not designed to maintain low latency
global consistency of state. Furthermore, after the Microsoft takeover in 2011,
Skype has switched to a centralized cloud-based architecture [53].

Researchers have also proposed esoteric C&C mechanisms: Stegobot [54] cre-
ates subliminal channels on social networks by steganographic manipulation of
user-shared images. Zeng et al. [55] describe a mobile P2P botnet concealing
C&C communication in SMS spam messages. Desimone et al. [56] suggest cre-
ating covert channels in BitTorrent protocol messages. These solutions present
interesting possibilities but are not very practical, with limitations in terms of
bandwidth, latency and security.

7 Conclusion

In this paper we have described ZombieCoin, a mechanism to control botnets
using Bitcoin. ZombieCoin inherits key strengths of the Bitcoin network, namely

12 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

it is distributed, has low latency, and it would be hard to censor C&C instructions
inserted in transactions without significantly impacting legitimate Bitcoin users.
Our prototype implementation demonstrates that it is easy to build this C&C
functionality by modifying freely available software, and experimental results
show that instructions propagate in near real-time on the Bitcoin network.

We believe ZombieCoin poses a credible threat and we hope our work prompts
further discussion and a step towards devising effective countermeasures.

8 Acknowledgements

This work is supported by the European Research Council (ERC) Starting Grant
(No. 106591). The authors thank Hassaan Bashir, Mike Hearn, Pawel Widera,
and Siamak Shahandashti for invaluable assistance with experiments and helpful
comments.

References

1. T. Weber. Criminals ’may overwhelm the web’. BBC Home, Jan. 25 2007. http:

//news.bbc.co.uk/1/hi/business/6298641.stm [accessed 22-July-2014].
2. D. Dittrich. So You Want to Take Over a Botnet. In Proceedings of the 5th USENIX

conference on Large-Scale Exploits and Emergent Threats (LEET). USENIX As-
sociation, 2012.

3. A. Stevenson. Botnets infecting 18 systems per second, warns FBI. V3.co.uk,
July 16 2014. http://www.v3.co.uk/v3-uk/news/2355596/botnets-infecting-
18-systems-per-second-warns-fbi [accessed 22-July-2014].

4. Android Smartphones ’Used for Botnet’, Researchers Say, July 5 2012. http:

//www.bbc.co.uk/news/technology-18720565 [accessed 5-July-2014].
5. J. Vincent. Could Your Fridge Send You Spam? Security Researchers

Report ’Internet of Things’ Botnet. The Independent, Jan. 20 2014.
http://www.independent.co.uk/life-style/gadgets-and-tech/news/could-
your-fridge-send-you-spam-security-researchers-report-internet-of-

things-\botnet-9072033.html [accessed 22-July-2014].
6. M. Bustillos. The Bitcoin Boom. The New Yorker, April 2013. http://

www.newyorker.com/tech/elements/the-bitcoin-boom [accessed 22-July-2014].
7. A. Young and M. Yung. Malicious Cryptography: Exposing Cryptovirology. John

Wiley & Sons, 2004.
8. ICT-FORWARD Consortium. FORWARD: Managing Emerging Threats in ICT

Infrastructures, 2007-2008. http://www.ict-forward.eu/ [accessed 22-July-2014].
9. P. Barford and V. Yegneswaran. An Inside Look at Botnets. In Malware Detection,

pages 171–191. Springer, 2007.
10. Robert Westervelt. Botnet Masters Turn to Google, Social Networks to Avoid

Detection. TechTarget, Nov. 10 2009.
11. M. Bowden. Worm: the First Digital World War. Atlantic Monthly Press, 2011.
12. B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,

C. Kruegel, and G. Vigna. Your Botnet Is My Botnet: Analysis of a Botnet
Takeover. In Proceedings of the 16th ACM conference on Computer and com-
munications security (CCS), pages 635–647. ACM, 2009.

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 13

13. P. Wang, S. Sparks, and C.C. Zou. An Advanced Hybrid Peer-to-Peer Botnet.
Dependable and Secure Computing, IEEE Transactions on, 7(2):113–127, 2010.

14. A. Neville and R. Gibb. Security Response: ZeroAccess Indepth. White paper,
Symantec, Oct. 4 2013.

15. B. Prince. Flashback Botnet Updated to Include Twitter as C&C. Secu-
rityWeek, April 30 2012. http://www.securityweek.com/flashback-botnet-
updated-include-twitter-cc [accessed 22-July-2014].

16. A. Lelli. Trojan.Whitewell: What’s your (bot) Facebook Status Today? Symantec
Security Response Blog, Oct. 2009. http://www.symantec.com/connect/blogs/
trojanwhitewell-what-s-your-bot-facebook-status-today [accessed 22-July-
2014].

17. E. Kovacs. RAT Abuses Yahoo Mail for C&C Communications. SecurityWeek,
Aug. 4 2014.

18. Takashi Katsuki. Malware Targeting Windows 8 Uses Google Docs. Symantec
Official Blog, Nov. 16 2012. http://www.symantec.com/connect/blogs/malware-
targeting-windows-8-uses-google-docs [accessed 4-Aug-2014].

19. S. Gallagher. Evernote: So Useful, Even malware Loves It. Ars Technica, Mar. 27
2013. http://arstechnica.com/security/2013/03/evernote-so-useful-even-
malware-loves-it/ [accessed 4-Aug-2014].

20. Bitcoin Wiki. Protocol Specification. https://en.bitcoin.it/wiki/
Protocol specification [accessed 22-July-2014].

21. R. Apodaca. OP RETURN and the Future of Bitcoin. Bitzuma, July 29 2014.
22. G. Andresen. Core Development Update #5. Bitcoin Foundation, Oct. 24 2013.
23. D. Bradbury. BlockSign Utilises Block Chain to Verify Signed Contracts. Coin-

Desk, Aug. 27 2014. http://www.coindesk.com/blocksign-utilises-block-
chain-verify-signed-contracts/ [accessed 27-Aug-2014].

24. Counterparty: Pioneering Peer-to-Peer Finance. https://www.counterparty.co/
[accessed 22-July-2014].

25. J. R. Willet. The Second Bitcoin Whitepaper, v. 0.5, January 2012. https://

sites.google.com/site/2ndbtcwpaper/2ndBitcoinWhitepaper.pdf [accessed 22-
July-2014].

26. Jeremy Kirk. Could the Bitcoin Network be used as an Ultrasecure Notary Service?
PCWorld, May 24 2013. http://www.pcworld.com/article/2039705/could-the-
bitcoin-network-be-used-as-an-ultrasecure-notary-service.html [accessed
27-Aug-2014].

27. Mastercoin transaction on Bitcoin Block Explorer. https://blockexplorer.com/
tx/17bf7d080e744df34f022dc50dc78bef8c02c2e347ba6bf4a07ceb4d20a43f86#o3.

28. J.W Bos, J.A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic Curve Cryptography in Practice. Microsoft Research, November 2013.

29. J. Clark and A. Essex. Commitcoin: Carbon Dating Commitments with Bitcoin.
In Financial Cryptography and Data Security, pages 390–398. Springer, 2012.

30. G.J. Simmons. The Prisoners Problem and the Subliminal Channel. In Advances
in Cryptology, pages 51–67. Springer, 1984.

31. G.J. Simmons. The subliminal channel and digital signatures. In Advances in
Cryptology, pages 364–378. Springer, 1985.

32. BitcoinJ: A Java implementation of a Bitcoin client-only node. https://

code.google.com/p/bitcoinj/.
33. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. online, 2009.

http://www.bitcoin.org/bitcoin.pdf [accessed 22-July-2014].
34. Azure: Microsoft’s Cloud Platform. https://azure.microsoft.com/en-gb/.

14 Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

35. S.A. Mehdi, J. Khalid, and S.A Khayam. Revisiting Traffic Anomaly Detection
using Software Defined Networking. In Recent Advances in Intrusion Detection,
pages 161–180. Springer, 2011.

36. R. Ford and S. Gordon. Cent, Five cent, Ten cent, Dollar: Hitting Botnets Where
It Really Hurts. In Proceedings of the 2006 workshop on New security paradigms,
pages 3–10. ACM, 2006.

37. J. Franklin, A. Perrig, V. Paxson, and S. Savage. An Inquiry into the Nature and
Causes of the Wealth of Internet Miscreants. In ACM conference on Computer
and communications security, pages 375–388, 2007.

38. Q Liao Z. li and A. Striegel. Botnet economics: Uncertainty matters. In Managing
Information Risk and the Economics of Security, pages 245–267. Springer, 2009.

39. P. Porras, H. Saidi, and V. Yegneswaran. A Foray into Conficker’s Logic and
Rendezvous Points. In USENIX Workshop on Large-Scale Exploits and Emergent
Threats, 2009.

40. T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements and
Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm Worm. In Pro-
ceedings of the First USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), pages 1–9, 2008.

41. B. Stock, J. Gobel, M. Engelberth, F.C. Freiling, and T. Holz. Walowdac - Analysis
of a Peer-to-Peer Botnet. In Computer Network Defense (EC2ND), 2009 European
Conference on, pages 13–20. IEEE, 2009.

42. D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos. Highly Re-
silient Peer-to-Peer Botnets Are Here: An Analysis of Gameover Zeus. In Mali-
cious and Unwanted Software:” The Americas”(MALWARE), 2013 8th Interna-
tional Conference on, pages 116–123. IEEE, 2013.

43. E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understand-
ing, Detecting, and Disrupting Botnets. In Proceedings of the USENIX SRUTI
Workshop, volume 39, page 44, 2005.

44. D. Ramsbrock, X. Wang, and X. Jiang. A First Step Towards Live Botmaster
Traceback. In Recent Advances in Intrusion Detection, pages 59–77. Springer,
2008.

45. G Gu, J Zhang, and W Lee. Botsniffer: Detecting Botnet Command and Control
Channels in Network Traffic. In Proceedings of the 15th Annual Network and
Distributed System Security Symposium, NDSS, 2008.

46. Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. BotMiner: Clus-
tering Analysis of Network Traffic for Protocol-and Structure-Independent Botnet
Detection. In USENIX Security Symposium, pages 139–154, 2008.

47. G. Gu, P.A. Porras, V. Yegneswaran, M.W Fong, and W. Lee. BotHunter: De-
tecting Malware Infection Through IDS-Driven Dialog Correlation. In USENIX
Security, volume 7, pages 1–16, 2007.

48. C.Y Cho, J. Caballero, C. Grier, V. Paxson, and D. Song. Insights From the
Inside: A View of Botnet Management From Infiltration. In USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), 2010.

49. S. Khattak, NR Ramay, KR Khan, AA Syed, and SA Khayam. A Taxonomy
of Botnet Behavior, Detection, and Defense. IEEE Communications Surveys &
Tutorials, 16(2):898–924, 2014.

50. SSC Silva, RMP Silva, RCG Pinto, and RM Salles. Botnets: A Survey. Computer
Networks, 57(2):378–403, 2013.

51. G. Starnberger, C. Kruegel, and E. Kirda. Overbot: a Botnet Protocol based on
Kademlia. In Proceedings of the 4th international Conference on Security and
Privacy in Communication Networks (SecureComm), page 13. ACM, 2008.

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 15

52. A. Nappa, A. Fattori, M. Balduzzi, M. DellAmico, and L. Cavallaro. Take a Deep
Breath: a Stealthy, Resilient and Cost-effective Botnet using Skype. In Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 81–100. Springer,
2010.

53. Z. Whittaker. Skype Ditched Peer-to-Peer Supernodes for Scalability, not
Surveillance, June 24 2013. http://www.zdnet.com/skype-ditched-peer-to-
peer-supernodes-for-scalability-not-surveillance-7000017215/ [accessed
20-July-2014.

54. S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal, and
N. Borisov. Stegobot: a Covert Social Network Botnet. In Information Hiding,
pages 299–313. Springer, 2011.

55. Y. Zeng, KG. Shin, and X. Hu. Design of SMS Commanded-and-Controlled and
P2P-Structured Mobile Botnets. In Proceedings of the Fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks (WiSec), pages 137–148,
2012.

56. J. Desimone, D. Johnson, B. Yuan, and P. Lutz. Covert Channel in the BitTor-
rent Tracker Protocol. In International Conference on Security and Management.
Rochester Institute of Technology, 2012. http://scholarworks.rit.edu/other/
300.

